65 research outputs found

    Gain and Loss Learning Differentially Contribute to Life Financial Outcomes

    Get PDF
    Emerging findings imply that distinct neurobehavioral systems process gains and losses. This study investigated whether individual differences in gain learning and loss learning might contribute to different life financial outcomes (i.e., assets versus debt). In a community sample of healthy adults (nβ€Š=β€Š75), rapid learners had smaller debt-to-asset ratios overall. More specific analyses, however, revealed that those who learned rapidly about gains had more assets, while those who learned rapidly about losses had less debt. These distinct associations remained strong even after controlling for potential cognitive (e.g., intelligence, memory, and risk preferences) and socioeconomic (e.g., age, sex, ethnicity, income, education) confounds. Self-reported measures of assets and debt were additionally validated with credit report data in a subset of subjects. These findings support the notion that different gain and loss learning systems may exert a cumulative influence on distinct life financial outcomes

    Dopamine restores reward prediction errors in old age.

    Get PDF
    Senescence affects the ability to utilize information about the likelihood of rewards for optimal decision-making. Using functional magnetic resonance imaging in humans, we found that healthy older adults had an abnormal signature of expected value, resulting in an incomplete reward prediction error (RPE) signal in the nucleus accumbens, a brain region that receives rich input projections from substantia nigra/ventral tegmental area (SN/VTA) dopaminergic neurons. Structural connectivity between SN/VTA and striatum, measured by diffusion tensor imaging, was tightly coupled to inter-individual differences in the expression of this expected reward value signal. The dopamine precursor levodopa (L-DOPA) increased the task-based learning rate and task performance in some older adults to the level of young adults. This drug effect was linked to restoration of a canonical neural RPE. Our results identify a neurochemical signature underlying abnormal reward processing in older adults and indicate that this can be modulated by L-DOPA

    Cognitive function is associated with risk aversion in community-based older persons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging data from younger and middle-aged persons suggest that cognitive ability is negatively associated with risk aversion, but this association has not been studied among older persons who are at high risk of experiencing loss of cognitive function.</p> <p>Methods</p> <p>Using data from 369 community-dwelling older persons without dementia from the Rush Memory and Aging Project, an ongoing longitudinal epidemiologic study of aging, we examined the correlates of risk aversion and tested the hypothesis that cognition is negatively associated with risk aversion. Global cognition and five specific cognitive abilities were measured via detailed cognitive testing, and risk aversion was measured using standard behavioral economics questions in which participants were asked to choose between a certain monetary payment (15)versusagambleinwhichtheycouldgainmorethan15) versus a gamble in which they could gain more than 15 or gain nothing; potential gamble gains ranged from 21.79to21.79 to 151.19 with the gain amounts varied randomly over questions. We first examined the bivariate associations of age, education, sex, income and cognition with risk aversion. Next, we examined the associations between cognition and risk aversion via mixed models adjusted for age, sex, education, and income. Finally, we conducted sensitivity analyses to ensure that our results were not driven by persons with preclinical cognitive impairment.</p> <p>Results</p> <p>In bivariate analyses, sex, education, income and global cognition were associated with risk aversion. However, in a mixed effect model, only sex (estimate = -1.49, standard error (SE) = 0.39, p < 0.001) and global cognitive function (estimate = -1.05, standard error (SE) = 0.34, p < 0.003) were significantly inversely associated with risk aversion. Thus, a lower level of global cognitive function and female sex were associated with greater risk aversion. Moreover, performance on four out of the five cognitive domains was negatively related to risk aversion (<it>i.e</it>., semantic memory, episodic memory, working memory, and perceptual speed); performance on visuospatial abilities was not.</p> <p>Conclusion</p> <p>A lower level of cognitive ability and female sex are associated with greater risk aversion in advanced age.</p

    Variance and Autocorrelation of the Spontaneous Slow Brain Activity

    Get PDF
    Slow (<0.1 Hz) oscillatory activity in the human brain, as measured by functional magnetic imaging, has been used to identify neural networks and their dysfunction in specific brain diseases. Its intrinsic properties may also be useful to investigate brain functions. We investigated the two functional maps: variance and first order autocorrelation coefficient (r1). These two maps had distinct spatial distributions and the values were significantly different among the subdivisions of the precuneus and posterior cingulate cortex that were identified in functional connectivity (FC) studies. The results reinforce the functional segregation of these subdivisions and indicate that the intrinsic properties of the slow brain activity have physiological relevance. Further, we propose a sample size (degree of freedom) correction when assessing the statistical significance of FC strength with r1 values, which enables a better understanding of the network changes related to various brain diseases

    Developmental Considerations for Assessment and Treatment of Impulsivity in Older Adults

    Get PDF
    Impulsivity is an important factor in many clinical disorders, especially alcohol and substance use disorders. Most of the research on impulsivity in this domain has focused on adolescence and young adulthood, as this developmental period is characterized by onset of and escalation in alcohol and substance use, likely driven in part by brain development patterns. Although many individuals eventually β€œmature out” of these behaviors in middle adulthood, a critical subset of people do not. The role of impulsivity in middle-to-older adulthood, when certain individuals transition from normative to disordered substance use, has not been carefully examined. The goal of this paper is to review the literature on measuring and modifying impulsivity from adolescence through older adulthood, with a special focus on middle-to-older adulthood. We propose that impulsivity research should include data on middle-to-older adulthood as an important time of transition to disordered use. We consider how impulsivity might have unique meaning at different stages of the adult lifespan and suggest modifications for assessing and treating impulsivity in older adults

    Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

    Get PDF
    Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives

    Your Resting Brain CAREs about Your Risky Behavior

    Get PDF
    Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI) and resting state functional connectivity (RSFC) methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate). We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion) was associated with 1) stronger positive functional connectivity between right inferior frontal gyrus (IFG) and right insula, and 2) weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that individual differences in attitudes toward risk-taking are reflected in the brain's functional architecture and may have implications for engaging in real-world risky behaviors

    Translating upwards: linking the neural and social sciences via neuroeconomics

    Get PDF
    The social and neural sciences share a common interest in understanding the mechanisms that underlie human behaviour. However, interactions between neuroscience and social science disciplines remain strikingly narrow and tenuous. We illustrate the scope and challenges for such interactions using the paradigmatic example of neuroeconomics. Using quantitative analyses of both its scientific literature and the social networks in its intellectual community, we show that neuroeconomics now reflects a true disciplinary integration, such that research topics and scientific communities with interdisciplinary span exert greater influence on the field. However, our analyses also reveal key structural and intellectual challenges in balancing the goals of neuroscience with those of the social sciences. To address these challenges, we offer a set of prescriptive recommendations for directing future research in neuroeconomics

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states
    • …
    corecore